Polarizability response spectroscopy: Formalism and simulation of ultrafast dynamics in solvation

نویسندگان

  • Andrew M. Moran
  • Sungnam Park
  • Norbert F. Scherer
چکیده

A formalism is presented for a novel fifth-order spectroscopy designed to measure the spectrum of nuclear modes coupled to photoinduced processes. In this description of polarizability response spectroscopy, a two-level system first interacts (twice) with an electronically resonant laser pulse to create ground and excited state wavepackets that evolve until the polarizability spectrum is probed by three off-resonant pulses and a fourth local oscillator probe field. In the experiment and in the present formalism, heterodyne detection is accomplished by tuning the relative phase of a local oscillator field with respect to the signal field. Full field-resolved signal detection by spectral interferometry is also described with the formalism of this paper. Terms in the response function involving electronic ground and excited state populations are shown to be 180 degrees out-of-phase. We present a model for which signal generation in the presence of these interfering terms results from two mechanisms: structural relaxation induced resonance and dephasing-induced resonance. Our model shows that interference between ground and excited state terms in the PORS response function may be interpreted as arising from the overlap of hole and particle nuclear wavepackets in coordinate space. These results are discussed in the context of experimental measurements for Coumarin 153-Solvent systems. Comparison of theoretical and experimental signals suggests that structural relaxationinduced resonance of the solvent is the primary origin of the measured signals in both solvation and charge transfer processes. 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solvent structural relaxation dynamics in dipolar solvation studied by resonant pump polarizability response spectroscopy.

Resonant pump polarizability response spectroscopy (RP-PORS) was used to study the isotropic and anisotropic solvent structural relaxation in solvation. RP-PORS is the optical heterodyne detected transient grating (OHD-TG) spectroscopy with an additional resonant pump pulse. A resonant pump excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored...

متن کامل

Two-dimensional measurements of the solvent structural relaxation dynamics in dipolar solvationw

Resonant-pump polarizability response spectroscopy (RP-PORS) is based on an optical heterodyne detected transient grating (OHD-TG) method with an additional resonant pump pulse. In RP-PORS, the resonant pump pulse excites the solute–solvent system and the subsequent relaxation of the solute–solvent system is monitored by the OHD-TG spectroscopy. RP-PORS is shown to be an excellent experimental ...

متن کامل

Two-dimensional measurements of the solvent structural relaxation dynamics in dipolar solvation.

Resonant-pump polarizability response spectroscopy (RP-PORS) is based on an optical heterodyne detected transient grating (OHD-TG) method with an additional resonant pump pulse. In RP-PORS, the resonant pump pulse excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored by the OHD-TG spectroscopy. RP-PORS is shown to be an excellent experimental ...

متن کامل

Electron solvation in finite systems: femtosecond dynamics of iodide. (Water)n anion clusters

Electron solvation dynamics in photoexcited anion clusters of I-(D2O)n=4-6 and I-(H2O)4-6 were probed by using femtosecond photoelectron spectroscopy (FPES). An ultrafast pump pulse excited the anion to the cluster analog of the charge-transfer-to-solvent state seen for I- in aqueous solution. Evolution of this state was monitored by time-resolved photoelectron spectroscopy using an ultrafast p...

متن کامل

Rsc_cp_c2cp23704k 1..8

Mixtures of the ionic liquid (IL) [C6mim] [Tf2N] and acetonitrile have been investigated by a combination of dielectric relaxation spectroscopy (DRS) and ultrafast transient absorption techniques using the molecular probe 120-apo-b-carotenoic-120-acid (120CA). Steady-state absorption spectra of the 120CA molecule have also been recorded. The position of the probe’s S0 S2 absorption maximum corr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007